If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+19n+13=0
a = 5; b = 19; c = +13;
Δ = b2-4ac
Δ = 192-4·5·13
Δ = 101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{101}}{2*5}=\frac{-19-\sqrt{101}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{101}}{2*5}=\frac{-19+\sqrt{101}}{10} $
| 126n=86¹ⁿ | | 375=(50+2x)(30+2x)-1500 | | 4x(x-1)=2(x*x+27) | | 126n=86¹0 | | Z/2-3z/4+5z/6=21 | | 9K+4=k+18 | | 8(x-1)=2(3x-1)+(1-2x) | | -3(3p+6)-2(2-14p)=3(2+6p) | | --5=s-3 | | 3^x*6^2x-3=45 | | 123n=27¹ⁿ | | 4x+1/2=x-1/4 | | 5(I)(-6i)=0 | | 8-8=4-4(x+3)+3x | | -11=4(5u-2)-3(5u-5)+2 | | (y+4)–(y–1)=6y | | (4y+7)-4+3y)=6 | | x+1/x=58/21 | | 3(y-5)+5(y+6)=63 | | 2/7x+1/3=2/5-5/7x+2/5 | | 4.9s+9.8-2.55s-2.5=9.7 | | 24(9-b)+12b=252 | | 18x^2+9x-9=0 | | 0=-12+2+6v+5 | | 12+4x=10x-18 | | 126n=27(10) | | -12v-8+7v+3=30 | | 18x^2-9x+9=0 | | 8.4k=10+k | | 6x+5-12=5x-2 | | 2.6=5.4p-46 | | 5=3x6 |